Constant-Rate Oblivious Transfer from Noisy Channels

نویسندگان

  • Yuval Ishai
  • Eyal Kushilevitz
  • Rafail Ostrovsky
  • Manoj Prabhakaran
  • Amit Sahai
  • Jürg Wullschleger
چکیده

A binary symmetric channel (BSC) is a noisy communication channel that flips each bit independently with some fixed error probability 0 < p < 1/2. Crépeau and Kilian (FOCS 1988) showed that oblivious transfer, and hence general secure two-party computation, can be unconditionally realized by communicating over a BSC. There has been a long line of works on improving the efficiency and generality of this construction. However, all known constructions that achieve security against malicious parties require the parties to communicate poly(k) bits over the channel for each instance of oblivious transfer (more precisely, ( 2 1 ) bit-OT) being realized, where k is a statistical security parameter. The question of achieving a constant (positive) rate was left open, even in the easier case of realizing a single oblivious transfer of a long string. We settle this question in the affirmative by showing how to realize n independent instances of oblivious transfer, with statistical error that vanishes with n, by communicating just O(n) bits over a BSC. As a corollary, any boolean circuit of size s can be securely evaluated by two parties with O(s)+poly(k) bits of communication over a BSC, improving over the O(s) · poly(k) complexity of previous constructions. ? Work done in part while visiting UCLA. Supported by ERC Starting Grant 259426, ISF grant 1361/10, and BSF grant 2008411. [email protected] ?? Work done in part while visiting UCLA. Supported by ISF grant 1361/10 and BSF grant 2008411. [email protected] ? ? ? Research supported in part by DARPA, IBM Faculty Award, Xerox Innovation Group Award, the Okawa Foundation Award, Intel, Teradata, NSF grants 0830803, 0916574, BSF grant 2008411 and U.C. MICRO grant. [email protected] † Supported by NSF grant CNS 07-47027. [email protected] ‡ Research supported in part from a DARPA/ONR PROCEED award, NSF grants 0916574 and 0830803, a Xerox Foundation Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. [email protected] § Research supported by the Canada-France NSERC-ANR project FREQUENCY.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Efficiency of Bit Commitment Reductions

Two fundamental building blocks of secure two-party computation are oblivious transfer and bit commitment. While there exist unconditionally secure implementations of oblivious transfer from noisy correlations or channels that achieve constant rates, similar constructions are not known for bit commitment. In this paper we show that any protocol that implements n instances of bit commitment with...

متن کامل

Oblivious Transfer from Weak Noisy Channels

Various results show that oblivious transfer can be implemented using the assumption of noisy channels. Unfortunately, this assumption is not as weak as one might think, because in a cryptographic setting, these noisy channels must satisfy very strong security requirements. Unfair noisy channels, introduced by Damg̊ard, Kilian and Salvail [Eurocrypt ’99], reduce these limitations: They give the ...

متن کامل

Efficient Oblivious Transfer Protocols Achieving a Non-zero Rate from Any Non-trivial Noisy Correlation

Oblivious transfer (OT) is a two-party primitive which is one of the cornerstones of modern cryptography. We focus on providing information-theoretic security for both parties, hence building OT assuming noisy resources (channels or correlations) available to them. This primitive is about transmitting two strings such that the receiver can obtain one (and only one) of them, while the sender rem...

متن کامل

Oblivious Transfer from Any Non-Trivial Elastic Noisy Channels via Secret Key Agreement

A (γ, δ)-elastic channel is a binary symmetric channel between a sender and a receiver where the error rate of an honest receiver is δ while the error rate of a dishonest receiver lies within the interval [γ, δ]. In this paper, we show that from any non-trivial elastic channel (i.e., 0 < γ < δ < 12 ) we can implement oblivious transfer with information theoretic security. This was previously (K...

متن کامل

Unfair Noisy Channels and Oblivious Transfer

In a paper from EuroCrypt’99, Damg̊ard, Kilian and Salvail show various positive and negative results on constructing Bit Commitment (BC) and Oblivious Transfer (OT) from Unfair Noisy Channels (UNC), i.e., binary symmetric channels where the error rate is only known to be in a certain interval [γ..δ] and can be chosen adversarily. They also introduce a related primitive called PassiveUNC. We pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011